赞助本站
虽然有关杀手机器人的炒作从未停止过,但2017年人工智能领域(AI)的确取得了许多显著进步。例如,名为“Libratus”的机器人在扑克游戏中大杀四方。而在现实世界中,机器学习正被用于改善农业和医疗行业。但是,你最近同苹果智能助理Siri或者亚马逊的人工智能助理Alexa聊过吗?然后你就会知道,尽管有许多关于AI的大肆宣传,亿万富翁们对此感到十分担忧,但有很多东西仍然是AI无法做到或能理解的。这里有五个比较棘手的问题,专家们将在明年重点关注它们。
1.人类话语意义
与以往任何时候相比,机器现在似乎可以更好地使用文本和语言。Facebook的AI可以为视障人士阅读图片上的描述,谷歌的AI可为回复邮件提供简短建议。然而,软件仍然不能真正理解我们话语中的意义,以及我们与之分享的想法。波特兰州立大学的梅勒妮·米切尔教授(Melanie Mitchell)说:“我们能够以不同的方式运用将所学到的概念,并将它们应用到新的环境中。而这些AI和机器学习系统还没有这样的能力。”
米切尔认为,今天的软件存在数学家吉安-卡洛·罗塔(Gian-Carlo Rota)所谓的“意义障碍”。许多领先的AI研究团队正试图弄清楚如何克服它。其中一项工作的目的是赋予机器以常识和物质世界的基础,这些基础同样支撑着我们的思维。例如,Facebook的研究人员正试图通过观看视频来教软件理解现实。其他团队正在努力模仿我们对这个世界的认识。谷歌一直在研究试图学会理解隐喻的软件。米切尔已经尝试了一些系统,用类比和关于世界的概念来解释照片中发生的事情。
2.现实差距阻碍了机器人革命
机器人硬件已经准备就绪,你可以花500美元买到装有高清摄像头、手掌大小的无人机。那些拖着箱子、使用两条腿行走的机器也有了很大改进。那么,为什么我们还没有被熙熙攘攘的机械帮手所包围?今天的机器人缺乏与其复杂肌肉相匹配的大脑。
让机器人从事需要特定编程来完成的特定任务时,它们可以通过反复试验(和错误)来学习诸如抓取物体之类的操作,但这个过程相对较慢。一个很有希望的捷径是让机器人在虚拟的模拟世界中训练,然后把那些来之不易的知识下载到物理机器人的身体里。然而,这种方法却被“现实差距”一词所困扰,这个短语描述了机器人在模拟过程中学习到了技能,但在被移植到物理世界的机器上时却并非总是有效。
“现实差距”正在缩小,今年10月份,谷歌在实验中报告了十分乐观的结果,模拟和真正的机器人手臂学会了挑选不同的物体,包括胶带、玩具以及梳子。然而,对于那些研究无人驾驶汽车的人来说,还需要更大的进步。为了减少在真实交通和道路条件下测试的时间和资金,在模拟街道上驾驶虚拟汽车的公司竞相在模拟街道上部署虚拟汽车。
无人驾驶汽车初创企业Aurora的首席执行官克里斯·厄姆森(Chris Urmson)表示,让虚拟测试更适用于真正的汽车是他的团队的首要任务之一。厄姆森之前负责领导谷歌母公司Alphabet旗下的无人驾驶汽车项目,他说:“明年我们将会很清楚地看到,我们如何利用这一优势加速学习。”
3.防范AI黑客
运行我们的电网、安全摄像头以及手机的软件总是被安全漏洞所困扰,我们不应该指望无人驾驶汽车和家用机器人的软件会有什么不同。事实可能更糟糕:有证据表明,机器学习软件的复杂性为黑客引入了新的攻击途径。研究人员今年发现,你可以在机器学习系统中隐藏一个秘密的触发点,使其在特定信号触发的情况下进入邪恶模式。纽约大学的研究小组设计了一个街头标志识别系统,它的功能十分正常,除了在看到黄色便利贴的情况下。在布鲁克林一个停车标志上贴上黄色便签,该系统将标牌报告为限速标志。这种黑客技术的潜力可能会给无人驾驶汽车带来许多麻烦。