如果反向传播能像今天这样具有可见性,我们的成就可能会比现在的阶段领先10年(计算能力除外)。
从70年代的普通神经网络到再循环网络,到今天的长短期记忆网络,都震动了人工智能领域。并且,它还只需要几十行代码!数代学生和研究人员经过数学计算,计算出了梯度下降法,证明了它的正确性。但最后,大多数人点了点头,说“这只是一种优化形式”便继续努力。分析理解是不够的。你需要某种形式的“发明家直觉”来使之与众不同。
要想拥有业界顶级研究水平绝非易事,因此99.9%的公司只是搭上主流人工智能列车,还无法成为业内大佬。核心技术是由业界主要的开源工具集和框架提供的。为了达到最新的水平,专有方法会随着时间的流逝而消失。从这个意义上说,绝大多数人工智能公司都是这些核心产品和技术的消费者。
列车通往何处?
人工智能(以及所需的数据)被拿来与许多东西进行比较:电、煤、黄金。这显示出科技界有多迫切想要找到规律或趋势。这是因为,这种知识对于规避一个简单的事实所能对你的业务或投资造成的风险至关重要。如果你把你的事业建立在人工智能列车的轨道上,没有什么能拯救你。
因为列车头已向商业领域飞奔而去,只有少数情况值得考虑。
第一种情况,主流人工智能研究列车的运行速度将明显放缓,甚至已经停止运行。这意味着更多的问题类别无法解决。这也意味着我们下车后,必须为我们的客户走到终点。这对创业公司来说是一个很大的机会,因为他们有机会开发专有技术,并有机会创建一个可持续发展的业务。
第二种情况是,主流列车在当前时期呼啸前行。那就更不容易躲开它的前进势头或下火车了。人工智能高速发展阶段中,个人方法的领域知识很可能被大公司“开源”。那么过去你所有的努力可能都变得一文不值。目前,像AlphaGo LINK这样的系统,除了由开源框架提供的标准(“vanilla”)功能外,还需要很高比例的专利技术。如果我们在不久的将来看到具有相同功能的基本脚本,我不会觉得惊讶。但“未知的未知”是一类问题,下一波人工智能的发展浪潮便能解决。自动编码和基于注意力的系统在解决这类问题上胜算很大。没有人能想象出,哪个垂直领域可以通过这个解决。几率:可能。
第四种情况,火车的速度更快。最后,“奇点已近”。现在已经有关于这方面的书了。亿万富翁们一直在为之奋斗。我可能会再写一篇关于它的文章。这里的终极游戏是人工通用智能。如果我们做到了这一点,一切赌注都结束了。
最后,还有“黑天鹅”事件的情况(“黑天鹅”指非常难以预测,且不寻常的事件,通常会引起市场连锁负面反应甚至颠覆)。在车库里的某个人发现了远离了主流算法的新一代算法。如果这位独行侠可以自己使用这种算法,我们可能会看到第一个自制的亿万富翁。但这种情况又从何而来呢?我不相信这种事可能会突然发生。它可能是主流技术和被抛弃的基于模型的算法的结合。2010年神经网络的兴起,一些曾经大有希望的方法(象征方法等)便失去了部分研究基矗目前在人工智能领域的研究也复兴了其他相关研究领域。要找到一种“不受欢迎”且还未涌入大量研究人员的技术或算法已经变得越来越困难。然而,可能会有一个局外人找到或复活一种改变游戏规则的方法。
谁能赢?
让我们把所有这些都放在一起,最后问一个价值百万美元的问题。答案不仅取决于以上种种情况,最重要的是在于你是谁。在这个等式中,业务的起始位置是一个关键因素,因为它的资源和现有资产是他们部署策略的关键。
在人工智能联赛中,有几家财力雄厚、能够吸引关键人才的公司。由于这是一个相当烧钱的过程,所以你需要其他的收入来源。这就限制了选手们进入著名的谷歌、Facebook、微软和IBM俱乐部。除了现有条件之外,他们还建立了庞大的专有系统,以及开放源代码的堆栈,来到达新的问题类。过了一段时间之后,你就会把这些东西放进下一代的开源框架中,以建立一个活跃的社区。