另外,机器学习还用乳腺癌的诊断,通过将机器学习应用于乳腺X光检查,来探索新的方法以提高乳腺癌的检测几率。Google、DeepMind联合英国癌症研究中心研发,希望建立一种机器学习模型,能够快速、准确地检测出癌症的迹象,帮助医生尽早发现癌症,以便尽早开始治疗。
机器学习运用到医疗领域之外,还可以推进很多的进展,还可以找到新的治疗方法,用到基因测序,计算机环保、能源、交通领域的问题,Lily Peng说,我们还是处在一个开端,我们希望这些方法能为研究机构提供更多的方法。
在环保问题上,Google邀请维多利亚大学博士生Victor Anton阐述了如何利用机器学习来保护鸟类。Victor Anton 致力于追踪新西兰濒临灭绝的鸟类,以改善对它们的保护工作。他收集了 5 万个小时的音频并将其转换成谱图,通过 TensorFlow 更加快速高效地分析这些音频,对鸟类的声音进行分类,识别谱图中的鸟鸣声,以便更好的了解鸟类。他希望此研究能够为新西兰未来的动物保护工作提供有价值的信息。
七、总结,Google是一家AI First的公司
Jeff Dean在会议最后总结到,作为一家 AI First 的公司,Google 致力于让每个人都能够从人工智能中获益。Jeff Dean称,虽然取得了一些成绩,但是还有很多困难需要克服。
例如需要想方设法让机器学习模型的创作过程更加触手可及?为了解决这个问题,Google已经开展了人工智能的内部培训,已经有1.8万名Google员工参加过此项培训,而且Google将于2018年在互联网上提供免费的机器学习课程。Jeff Dean同时透露,Google也同时在中国招募机器学习相关的人才。
另外一个挑战是,如何确保我们构建的机器学习模型具有包容性,并且能够真正为每个人所用?Jeff Dean说,Google已经启动了People + AI Research (PAIR) 计划,这个计划旨在将 Google 的研究人员聚集在一起,研究并重新设计人与人工智能系统交互的方式。Facets 正是此计划所孕育出的一种工具,能够 将用于机器学习的训练数据可视化。
除此之外,Google还与Geena Davis 研究所合作建立了GD-IQ,可以利用机器学习检测电影中性别偏见的工具。